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A lattice model of hydrogen bonding in mixtures: 
I. General formulation in terms of weak subgraphs 
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Department of Physics, CP 223, Universite libre de Bruxelles, 1050 Brussels, Belgium 

Received 3 June 1985 

Abstract. A particular version of the lattice model of Abraham and Heilmann for hydrogen- 
bonded systems is worked out by means of a weak subgraph expansion. Each site may 
be occupied by one molecule, A or B, and two neighbouring molecules A may bind together, 
as far as neither of them is already engaged in more than one bond. It turns out that, for 
a wide range of the parameters involved in the model, the zeroth approximation (replace- 
ment of the true lattice by a Bethe lattice) leads to reasonable values of its thermodynamic 
properties. 

1. Introduction 

Some kinds of molecules, typically alcohols, are able to associate rather strongly by 
forming hydrogen bridges. As a consequence, the mixture of an alcohol A (like ethanol) 
with an inert solvent B (such as tetrachloromethane) is usually regarded as a multicom- 
ponent system of monomers A and B, plus a whole variety of dimers, trimers,. . . n- 
mers, . . . of molecules A. The thermodynamic properties of such mixtures have been 
usually formulated by introducing a set of association constants K, ,  one for each kind 
of n-mer, various assumptions being subsequently made ( i )  on the mixing properties 
of the different molecular species (ideal or non-ideal mixing) and (ii) on how these 
various K ,  are interrelated (Prigogine et a1 1956). 

An alternative to these ‘chemical’ theories was presented a few years ago by Abraham 
and Heilmann (1972, 1975) who introduced a new type of two-component lattice 
model, applying precisely to the case considered here: each site is occupied by one 
molecule, A or B, and the A molecules are able to form bonds with neighbouring ones 
of the same species, up to a maximum number p ,  each bond formation reducing the 
free energy of the system by a definite amount. Abraham and Heilmann were however 
essentially interested in the existence of order-disorder transitions in their model, in 
relation to p ,  and not in its detailed thermodynamic properties. Here our aim will 
precisely be to evaluate these properties explicitly for the particular case p = 2, i.e. 
each A is allowed to bind at most two times. This model which displays no phase 
transition, corresponds reasonably well to the mixture of an alcohol with an inert 
solvent; it allows the formation of cyclic as well as open chains of A molecules, the 
determining factors being (i)  the free energy of formation of the bonds and ( i i )  the 
lattice structure (mainly through its coordination number 4 ) .  

This model will be treated by a method originally developed by Nagle for the ice 
problem (Nagle 1966a) and the monomer-dimer problem (Nagle 1966b), in such a 
way that the logarithm of the grand partition function (and all subsequently derived 
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quantities) eventually separates into two terms, the first one in a close analytic form 
and the second one as an  expansion in correspondence with a class of weak subgraphs 
associated to the lattice. It will be shown that, for situations of practical interest, the 
first term is largely dominant. 

2. Formal treatment of the grand partition function 

Consider a homogeneous lattice of V equivalent sites, with coordination number q, 
each site being occupied either by a molecule A ('alcohol') o r  by a molecule B ('inert 
solvent'), with the following rule: 

'Two neighbouring molecules A are allowed (but not compelled) to form 
a bond, provided that neither of them is already engaged in more than 
one bond'. 

Given the numbers No, NI and N2 of A molecules respectively engaged into 0, 1 or 2 
bonds (denoted hereafter as &, A, and A2), the grand partition function of the system 
reads 

2 (  Z A Y l )  NI( z A y 2 )  ( 1 N 2 )  
v - \ , - v  n=C C (z ,+z*)  

NI N2 

= ( Z A + z B ) "  1 ( z , v l )N1(z~2)"2h(N1 ,  N2); (2.1) 
N I  N: 

zA, zB are the activities, z is defined as 

Z = ~ A / ( Z A + Z B ) ,  (2.2) 
h ( N , ,  N 2 )  is the number of different bond arrangements and  y , ,  y2 are Boltzmann 
weights associated with A, and  A2 respectively, so that bonds A,-A,, A,-A2 and A,-A, 
contribute as y:, y , ~ : ' ~  and y,. (Should all bonds be equivalent, then y 2 = y : ;  the 
introduction of two weights y, ,  y ,  makes the model more flexible: for y 2  = 0, molecules 
A can only dimerise while for y ,  = 0, they can only polymerise in cycles.) 

Let us number all sites 1, . . . i, . . . V and denote their occupancy by a set of variables 
s,, . . . s,, . . . sv. Each site may be occupied by either A,, A, or a non-bonded molecule 
X (i.e. & or  B), with $q(q-1)  and q different bond orientations for A2 and A,,  
respectively. Arbitrary distributions of A* and A ,  molecules on the lattice are not all 
acceptable, however. Consider the lattice graph G formed by the V sites and the 4qV 
edges joining first neighbouring sites; configurations counted in h(  NI, N2) are such 
that all edges of G are occupied either in a directly compatible way (DC)  or  in an  
indirectly compatible way ( I C ) ,  as defined in table 1. We may then write 

where we sum over all configurations C, acceptable or  not, and  the product includes 
all edges of G, with 

A(s,, 3,) = 1 
= O  

if (st, 3,) E DC or  I C  

if (s!, s J )  E I (incompatible). 

See table 1. As each acceptable configuration exactly contains $NI + N2 edges DC and  
1 * q  v-' ,NI - N2 edges IC, (2.3) may be rewritten as 
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Table 1. Site and edge occupancies 

~ 

Site I Edge g 

r,  Representation Bond orientations r,, x1 Compatibility 

Directly compatible 
I 

LJ 
L - 7 - J  

L' 4 ( 4 - 1 ) / 2  A2 ..I 

'\ 8 )  

c -?- 9 
I 

\ I  

X = A , , o r B  , I  none x-- - -x Indirectly compatible ( I C )  
,o- - 

I 

Incompatible ( I )  
L - - - x ,  x - - A  On the right-hand side of this table, a cross means 

that site i (or j )  is occupied by X, A, or A,, with no 

x-- : o - - ,  i - - o r  )-- 
bond issued from i to j (or j to i )  i.e. + - - X I  x-- - 
where 

a ( s l ,  ' 1 )  = uD(- for (s,, s,) E DC 

= a,, for (s,, s)) E IC (2.5) 
= -1 for (s,, s J )  E I. 

Expression (2.4) provides the starting point of a weak subgraph expansion (the values 
of a,, and a,, will be conveniently fixed in the next section). Substituting (2.4) into 
(2.1) gives 
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each term of which matches that particular subgraph g of G which includes the 
corresponding edges and their adjacent sites (g may involve disconnected parts but 
no isolated sites). Hence, taking advantage of the normalisation of b ( s ) ,  the last 
expression may be rewritten as a sum of weighted subgraphs of G 

(2.9) 1 +  c W g )  

w(g)  =C.. .I b ( s , ) .  . . b(s , )a  

for g including edges ( i j )  . . . ( k l ) .  As W(g 
expression (2.9) may be transformed into 

gc G 

with 

si ( 1  

1 +E ( g ;  G) W g )  

s,, sj 1 . . . a ( s k ,  S I  ) 

merely depends on the topology of g, 

where g is now any graph (devoid of isolated sites) and (g;  G)  is the number of 
subgraphs of G isomorphic to g, i.e. the number of weak embeddings of g in G (Essam 
and Fisher 1970). Generally speaking, (g; G) is a polynomial in V, the degree of 
which equals the number of disconnected pieces of g and, due to a general theorem 
for homogeneous lattices (Domb 1960 pp 220-5), one has 

where (g;  G),  is the coefficient of the term of degree one in V. Combining with (2.8), 
we finally obtain 

n l / V  = ( z , + ~ , ) [ l + q a , + ~ q ( q - l ) a , ] ( l - t a , ~ ) - ~ ’ ~ e x p ( ~ )  (2.10) 

F = C  (g; G),W(g).  (2.1 1) 
where 

g 

3. Weighting the graphs 

Consider the factorisation 

a(%, s,) = c , ( s , )c , , ( s , )  (3.1) 

where c , ( s , )  can take two values, co and c , ,  corresponding to the situations described 
in table 2. It follows, from (2.5) 

= c: a,, = ci  -1 = coc, (3.2) 

Table 2. Values of c,,(s,) for various states of site I ,  independently of the state of site J .  
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and next, from (2.7) 

(3.3) 2 a ,  = ZYlCO a 2  = zy,c,. 

On account of the factorised form (3.1), W ( g )  may now be expressed as a product of 
weights associated to each site of g ,  i.e. 

W ( g )  = n [; ( b ( s , )  n C,,(SJ)], 

where the last product involves all edges of g incident with site i. This can be rewritten 
as 

W ( g )  = fi w(d)L"gl 
d = l  

(3.4) 

where u d ( g )  is the number of sites of degree d in g (the degree of a site is the number 
of edges incident with it) and w( d )  is the corresponding weight of such a site (labelled 
as 1): 

The evaluation of w(d )  is straightforward: 

w ( d )  = ~ ~ ~ ~ [ 1 + q a , + ~ q ( q - l ) a ~ ] ~ ' { ~ ~ + a , c , [ d c ~ + ( q - d ) c ~ l  

+ a2[4d( d - l)c:+ d ( q  - d )cocI + i ( q  - d ) ( q  - d - 1)c:l) 

or, on account of c, = -1/ co, 

w(d)  = c t { l - [ l +  qa, + i q ( q  - l ) a 2 ] - ' d ( l  + c i 2 ) [ a , + ( q  - l ) a z - i ( d  - 1 ) (1+  c i 2 ) a 2 ] } .  
(3.5) 

The parameter co, which is still arbitrary, will now be fixed by imposing w (  1) = 0; this 
condition nullifies the weights of all graphs with sites of degree one and  considerably 
simplifies the evaluation of F. It then follows, from (3.5) 

(1 + c i 2 ) [ a , + ( q -  l)a,]  = 1 + q u , + i q ( q - l ) a , ,  (3.6) 

so that 

w ( d ) = ( d  - l ) ~ , d { ~ d ( l + ~ ~ * ) a ~ [ a l f ( q - l ) ~ z ] ~ ' - l }  

The combination of (3.6) with (3.3) leads to the following relationship between co 
and z :  

z = C"{Y,[l - ( q  - l )C3  + yzc,,(q - 1111 - f ( q  - 2)C:F1 

In the limit of low z (low concentration of A), one has c,,=zy,; we shall therefore 
eliminate co everywhere in terms of the more convenient variable x = c,,/y,. This gives 

(3.7) z = XI1 - x 2 y : ( q  - 1) +x.v:!(q - 1)[1 -4(q -2)x2yf]} I 

and 

w ( d ) = ( d -  l)xd-'yf-2{idy2(l + x x ? y ~ ) [ l + x y ~ ( q - l ) ] - ' - ~ p ~ } .  (3.8) 

Not only does x tend to z at sufficiently low values but it becomes strictly identical 
to z when both y ,  and y, equal zero (ideal mixture of A and B). 



3512 A Bellemans, J-P Ryckaert and  D Beltus 

As a final step, we rewrite the grand partition function (2.10) in terms of x, with 
the result 

Inn""=[In(zA+Z,)+L(x;  y I ,yz ) ]+F(x ;  y l , y > )  (3.9) 

with 

(3.10) 

This completes the formalism: In n"" appears as the sum of two terms, the first one 
expressed in close form and the second one expandable according to graphological 
prescriptions. 

2 1 l - ( q / 2 )  exp L(x;  y 1 , y 2 ) = ( z / x ) [ 1 + x y 2 ( q - 1 ) 1 ( 1 + x  Y ; )  

4. Thermodynamic properties 

The molar fractions xA, xB follow from the general formula 

X B  = 1 - XA = z,(d/dzB) In 0' ", 

which, when applied to (3.91, gives, on account of (2.2) 

x B = i l  - z ) [ l - ( d / d I n z ) ( L + F ) ] .  

The chemical potentials p A ,  p B  are related to zA, zB by the expression 

P A - p B '  kT ln(zA/zB) (4.2) 

and  they must also satisfy the Gibbs-Duhem equation 

X,., dpA 4- XB d p B  = 0. 

It then follows that 

d/*A=XBd(PA-p*H)= ~ T X B  d ln(zA/Ze) 

= kTxB d ln[z/( 1 - z ) ]  = kTx,( 1 - z) - '  d In z. 

Combining with (4.1), we obtain 

d p A  = k T  d(ln z -  L -  F )  

and finally, by putting the integration constant to zero, 

p A / k T = l n  Z - L - F  

This implies also, on account of (4.2) 

p B / k T  = In (1 - z )  - L -  F. 

Consider the limiting situation of an  ideal mixture, i.e. y, = y z  =: 0, in which case 
z = x while L and  F trivially vanish; it follows from (4.1) that xA = 1 - xB = z, so that 
(4.3) and (4.4) reduce to 

kLAd/kT=Inx, p:/ k T  = In xB. 
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In order to measure the non-ideality of the mixture, we shall introduce the so-called 
excess chemical potentials p i  and p i ,  defined as pA-pT and p B - p f ;  this gives, in 
the present case 

p ~ / k T = h ( Z / X A ) - L -  F, 

peg/kT= ln[(l-  z ) / x B ]  - L -  F. 

Table 3. Weak subgraphs of the simple cubic lattice, up to n = 8, with all sites of degree 
2 at least. 

~ 

4 U 3 

6 0 22 

7 e 18 

8 a 207 

24 

30 

99 n o  -- 2 

Table 4. Excess chemical potential pA computed at various levels of approximation (simple 
cubic lattice). 

( a )  y ,  = 10, y2 = 10 

PeAJ kT 
XA Zeroth n = 4  n = 6  n = 8  n = 10 

0.2 -2.440 03 -2.438 24 -2.437 97 -2.437 93 -2.437 91 
-2.923 29 -2.923 26 -2.923 22 -2.923 20 0.4 -2.923 80 

0.6 -3.147 74 -3.147 74 -3 147 74 -3.147 74 -3.147 74 
0.8 -3.252 73 --3.253 29 -3.253 33 -3.253 34 -3.253 34 
1 .o -3.282 96 -3.285 60 -3.286 18 -3.286 43 -3.286 53 

( b )  y , = l , v 2 = 1 0  

P L l k T  
'A Zeroth n = 4  n = 6  n = 8  n = 10 

0.2 -2.264 60 -2.259 69 -2.258 68 -2.258 28 -2.257 95 
0.4 -2.788 85 -2.787 88 -2.787 81 -2.787 G7 -2.787 61 
0.6 -3.027 21 -3.027 21 -3.027 21 --3.027 21 -3.027 21 
0.8 -3.138 06 -3.138 77 -3.138 82 -3.138 84 -3.138 84 
1 .o -3.169 85 -3.173 33 -3.17420 -3.174 64 -3.174 84 
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(Note that both p i  and p i  tend to zero at vanishing concentration of A.) Owing to 
the complexity of the expressions of z, L and F in terms of x, the values of p l  and 
p*eg, as functions of xA, cannot be obtained analytically. The standard procedure, for 
a specified value of xA, is to solve (4.1) numerically for x and then to calculate the 
corresponding values of pa and peg. 

5. Numerical analysis of the model 

Our aim now will be to see to what extent the formalism developed so far is useful 
in practice for computing the thermodynamic properties of the model. Obviously, the 
evaluation of F is a tedious task which cannot possibly be carried out beyond a certain 
level of complexity of the lattice subgraphs. What we may hope is that, for at least 
some range of the parameters y, ,  y,, the contribution of F to the thermodynamic 
properties converges rapidly when the subgraphs get larger (or is even negligible). 
This expectation is not unrealistic: such a situation is precisely met for the ice model 
and the monomer-dimer model, when treated by the kind of formalism we use here 
(Nagle 1966a, b, Gaunt 1969). 

Our strategy will be as follows: for a given lattice, we group together the contribu- 
tions of all subgraphs with the same number of edges n ;  we then compute F to various 
levels of approximation F,,, by including the contributions of all graphs with n edges 
or less, and we proceed further to obtain the excess chemical potentials to the same 
order in n. Because all sites of the relevant subgraphs must be of degree two at least, 
the first one to appear is the shortest cycle realisable on the lattice (which means n = 4 
for the simple cubic lattice). As zeroth approximation we simply put F equal to zero 
or, equivalently, we treat the lattice as if it contained no cycle path at all. The topological 
meaning of this approximation is that we replace the actual lattice by a Bethe (pseudo-) 
lattice with the same coordination number q. 

As an illustration, consider the simple cubic lattice; the relevant graphs are listed 
in table 3 (with their embedding numbers) up to n = 8. The excess chemical potential 
p i ,  obtained numerically, is quoted in table 4, for different levels of approximation 
n. For the two cases considered, y ,  = y, = 10 and y ,  = 1, y, = 10, it is quite clear that, 
when going from the zeroth approximation to higher ones, there is hardly a change 
in p i .  More extensive numerical work, on the simple cubic lattice and other ones as 
well, has shown that for most values of y,,  y,, which are physically compatible with 
the strength of hydrogen bonds, the zeroth approximation is very satisfactory. 

There exists however one pathological situation where it leads to a complete failure: 
when y ,  equals exactly zero, molecules will only polymerise in cycles and, as no cycles 
are possible on a Bethe lattice, L vanishes exactly and it is precisely F which is the 
relevant term in this case. 

6. Final remarks 

The fact that the zeroth approximation works well for this model is encouraging; in 
a forthcoming paper, we will compare the model to some real systems and also to 
some of the so-called ‘chemical’ theories. We also intend to generalise the formalism 
in order to treat more complicated bonding effects (e.g. B being able to associate with 
A) and to include surface terms. 
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